
bio_utils Documentation
Release 1.3.0

Alex Hyer

Dec 26, 2018

Contents

1 Summary 3

2 Introduction 5

3 Installation 7

4 Contents 9
4.1 Classes . 9
4.2 Iterators . 10
4.3 Verifiers . 11
4.4 Blast Tools . 12
4.5 Contributing . 13
4.6 Roadmap . 18

5 Indices and tables 21

6 Copyright 23

Python Module Index 25

i

ii

bio_utils Documentation, Release 1.3.0

Authors Alex Hyer, William Brazelton, Christopher Thornton

Date Dec 26, 2018

Version 1.3

Software library containing common bioinformatic functions

Copyright:

__init__.py software library containing common bioinformatic functions Copyright (C) 2015 William
Brazelton, Alex Hyer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

Contents 1

bio_utils Documentation, Release 1.3.0

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

2 Contents

http://www.gnu.org/licenses/

CHAPTER 1

Summary

bio_utils is a library of Python modules performing routine functions in bioinformatic scripts.

3

bio_utils Documentation, Release 1.3.0

4 Chapter 1. Summary

CHAPTER 2

Introduction

Many bioinformatic scripts perform similar or identical tasks internally during the execution of a program. Such tasks
include reading FASTA files or filtering BLAST+ results. bio_utils contains numerous functions that quickly and
simply handle simple, mundane, everyday tasks in a streamlined and simple fashion to save developers time. bio_utils
aims to be as simple as possible, providing functionality without adding in unnecessary features, i.e. bio_utils is as
vanilla as reasonable. This both increases the speed of most functions and greatly simplifies APIs.

Many libraries, such as SCREED and Biopython, already provide importable functions that execute these simple tasks.
SCREED maintains a fairly simple API but is fairly slow and no one has updated the original repo since 2012-06-17.
Numerous developers actively maintain Biopython and it is quite a bit faster, in some regards, than SCREED. However,
Biopython stocks their functions with an enormous number of features that, while useful in a Python interpreter, are
often ignored by programs or can be accomplished more quickly using built-in Python features, i.e. Biopython is
bloatware to many developers. As aforementioned, bio_utils’ vanilla design overcomes both these libraries issues by
providing both simplicity and speed.

At this point in time, bio_utils is quite small and its scope limited. The authors intend to slowly but surely increase
this library’s repertoire over time. We welcome any and all contributions to our project.

5

https://screed.readthedocs.io/en/v0.9/
http://biopython.org/

bio_utils Documentation, Release 1.3.0

6 Chapter 2. Introduction

CHAPTER 3

Installation

pip install bio_utils

7

bio_utils Documentation, Release 1.3.0

8 Chapter 3. Installation

CHAPTER 4

Contents

4.1 Classes

4.1.1 Introduction

bio_utils’ offers many classes that house biological data from many different file formats. Each instance contains an
attribute per field of a given file format as well as a write()method that returns the original entry properly formatted
and followed by a newline character. Each section below includes a simple description of what each format contains
and a link to a detailed description of said format.

These classes are currently contained in the iterators subpackage but will constitute their own package later, see
Roadmap for details.

4.1.2 B6Entry

B6 files contain various data detailing the length and quality of an alignment between nucleotide or protein sequences.
This file format is used by NCBI BLAST+ as output format 6, hence B6 (Blast+ 6). B6 was referred to as M8 in NCBI
BLAST. drive5 contains a good, succinct description of this format. This class only supports the default B6 format
and does not accept arbitrary fields.

4.1.3 FastaEntry

FASTA files contain nucleotide and protein sequences differentiated by unique identifiers. Wikipedia provides both
the history of the FASTA format and format specifications.

4.1.4 FastqEntry

FASTQ files contain nucleotide and protein sequences differentiated by unique identifiers, like FASTA files. FASTQ
files also contain quality scores indicating the confidence of each base or residue declaration. Wikipedia provides a
description of the FASTQ format and the meaning of the various quality scores.

9

roadmap.rst
https://www.ncbi.nlm.nih.gov/books/NBK279690/
http://www.drive5.com/usearch/manual/blast6out.html
https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTQ_format

bio_utils Documentation, Release 1.3.0

4.1.5 GFF3Entry

General Feature Format 3 (GFF3) contain various data on the location, type, and quality of a nucleotide or protein
sequence annotation. As opposed to previous versions, GFF3 support an arbitrary number of hierarchical annotation
levels. GMOD gives a very detailed walkthrough of this format.

4.1.6 SamEntry

Sequence Alignment/Map (SAM) files contains details on the location and quality of an alignment. Many alignment
programs produced SAM files as their default output. GitHub host a painfully detailed description of the SAM file
format.

4.2 Iterators

4.2.1 Introduction

The bio_utils’ iterators subpackage contains numerous iterators for a variety of biology-relevant file types. The con-
tained iterators share numerous features listed in the next section. The subsequent sections detail iterator-specific
elements. Each iterator returns file-specific Python classes. This page only details how to use the iterators not the
instances they return, see Classes for details on each class in bio_utils.

4.2.2 Common Features

Abilities shared by all iterators in this package include:

• Return file-specific instances, see Classes for more details

• Support the next() and __next__() methods

• Usable in for loops

• Accept any iterator: iter() objects, file handles, memory files, etc.

• Begin iteration at arbitrary lines using start_line or header argument

All iterators in this package are quite fast; the following table compares SCREED’s, Biopython’s, and bio_utils’
FASTA iteration speed in seconds on a 3.2 GB FASTA file containing 1,614,108 sequence entries averaging 158 bases
each.

FASTA File Iteration Speed for Different Libraries (seconds)
Library Trial#1 Trial#2 Trial#3 Trial#4 Trial#5 Average
SCREED 974.812 971.185 953.027 961.247 971.924 966.439
Biopython 581.148 575.677 585.322 548.876 516.235 561.452
bio_utils 290.876 298.047 291.625 291.966 289.635 292.430

4.2.3 b6_iter

Iterates over B6 alignment files and returns each line as an instance of B6Entry. This iterator does not support arbitrary
table modifications as does BLAST+.

10 Chapter 4. Contents

http://gmod.org/wiki/GFF3
https://samtools.github.io/hts-specs/SAMv1.pdf
classes.rst
classes.rst

bio_utils Documentation, Release 1.3.0

4.2.4 fasta_iter

Iterates over a FASTA file and returns each entry as an instance of FastaEntry. This iterator can handle sequences
spanning multiple lines.

4.2.5 fastq_iter

Iterates over a FASTQ file and returns each entry as an instance of FastqEntry. This iterator can handle sequences and
quality score spanning multiple lines.

4.2.6 gff3_iter

Iterates over a GFF3 file and returns each line as an instance of GFF3Entry.

4.2.7 sam_iter

Iterates over a SAM file and returns each as line as an instance of SamEntry.

4.3 Verifiers

4.3.1 Introduction

The bio_util’s verifiers subpackage contains numerous functions that verify the data of a biological file format, i.e.
they ensure a given file is properly formatted. These function check file entries against a regex matching a given file
format. If the match fails, the verifier will subdivide the entry and determine what part of the entry fails the regex.
This investigation of the entry permits the verifiers to return detailed error messages on what and where the file failed.
Each verifier except entry_verifier is also a program with the simple syntax

[file]_verifier <file>

which simply reads through a file and prints whether ot not it is valid.

4.3.2 entry_verifier

The guts of the verifiers package, this versatile function matches a string to a regex. If the match fails,
entry_verifier() splits both the regex and string by a given delimiter and matches each regex fragment to
its corresponding string fragment. When a string fragment fails, a custom FormatError containing details on the
failure is raised.

4.3.3 b6_verifier

Verifies the validity of a list of B6Entry.

4.3.4 binary_guesser

Heuristically guess whether a file is binary or text. While not technically a “verifier”, this function fits in this subpack-
age well as it helps confirm a generic property of the file before use by a program.

4.3. Verifiers 11

bio_utils Documentation, Release 1.3.0

4.3.5 fasta_verifier

Verifies the validity of a list of FastaEntry.

4.3.6 fastq_verifier

Verifies the validity of a list of FastqEntry.

4.3.7 gff3_verifier

Verifies the validity of a list of GFF3Entry.

4.3.8 sam_verifier

Verifies the validity of a list of SamEntry.

4.4 Blast Tools

4.4.1 Introduction

The bio_utils’ blast_tools subpackage contains a few tools for making BLAST output easier to work with. They are
from extensive but what they do provide may be useful to some developers.

4.4.2 blast_to_cigar

A simple function that converts the query sequence, subject sequence, and midline fields of BLAST+ XML output
(M7) to a CIGAR string. This function supports both the newer and older versions of CIGAR strings.

4.4.3 b6_evalue_filter

This function iterates through any iterator yielding lines of a B6/M8 file. This iterator only returns the lines above an
E-value threshold as B6Entry.

4.4.4 query_sequence_retriever

Retrieve the aligned query sequence for each alignment in a B6 file above an E-value threshold.

4.4.5 subject_sequence_retriever

Identical to query_sequence_retriever except it returns subject sequences.

12 Chapter 4. Contents

http://drive5.com/usearch/manual/cigar.html

bio_utils Documentation, Release 1.3.0

4.5 Contributing

4.5.1 Introduction

Due to the potential size of this project and contributors thereto, it is helpful to have an underlying, general philosophy
concerning what should be included in bio_utils, how it should be coded, and where it should go within the library.
This ensures that everything is structured logically and that the library is both intuitive to use and internally consistent.
This document explains these philosophies—and their implementations—and should be read by anyone looking to
contribute to the library on whether or not their script belongs in bio_utils, where it belongs, and how to structure their
script.

4.5.2 How to Contribute

This section is placed near the top for your convenience, if this is your first time contributing, please read the rest of
this document first.

Start-Up Preparation

Follow these steps if you have never contributed to bio_utils before:

1. Install the following software:

• Git

• Sphinx

• pytest

• gitchangelog

2. Get a GitHub account

3. Fork the repo (‘fork’ button)

4. Clone your copy of bio_utils:

git clone https://github.com/<your GitHub account username>/bio_utils.git

5. Connect the “official” bio_utils repo to your fork:

git remote add braz https://github.com/Brazelton-Lab/bio_utils.git

Actually Contributing

Before editing anything, run the following command to make sure your copy of bio_utils is up-to-date with the “offi-
cial” branch:

git pull braz master

After editing or adding files, perform the following steps:

1. Write a unit test if you wrote a new script.

2. Run unit tests and do not continue with this workflow unless they pass:

4.5. Contributing 13

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://www.sphinx-doc.org/en/stable/install.html
http://docs.pytest.org/en/latest/getting-started.html
https://pypi.python.org/pypi/gitchangelog
https://github.com/
https://github.com/Brazelton-Lab/bio_utils
http://docs.pytest.org/en/latest/getting-started.html

bio_utils Documentation, Release 1.3.0

cd <main directory of git repo>
py.test

3. Add files to your git commit:

git add <file>

4. Update ChangeLog.rst:

gitchangelog > ChangeLog.rst

5. Commit your changes, add a detailed message in whatever text editor appears:

git commit

6. Push your commit to GitHub:

git push origin

7. Repeat steps 1-6 until you want to merge your changes to the “official” repo

8. To merge your changes, go to you GitHub copy of bio_utils and click ‘Compare & pull request’

9. In your pull request mention @TheOneHyer for review

4.5.3 Core Principles

Simple-to-Use/Intuitive

A software library is analogous to a toolkit. Like a real-world toolkit, it should be organized so that any single tool
can be found without any real effort. Once a tool is found, it’s function should be obvious based on it’s name, e.g.
a screwdriver drives a screw through material. To translate this analogy to computer terms, each script should be a
single tool whose name reflects its function.

ASAP (As Simple As Possible)

A screwdriver drives a screw, a hammer applies normal force, and a wrench applies torque. Each of these tools’ use is
fairly singular and unique. Each script in a library should have a single, unique function. To say that in more confusing
terms: each tool should do one thing and one thing only, and said thing shall not have already been done. Additionally,
each script should be written in a straightforward manner that is easy to read and understand; i.e. each script should
be Pythonic.

Heavily Documented

A library is used by developers writing a program. This obvious statement should lead to an obvious conclusion:
a library is of no use if a programmer doesn’t know/can’t find out what any given tool does. Thus, each script
should be very documented heavily. While, it is better to document more than less, there is such a thing as too much
documentation. There comes a point where documentation is too repetitive and confuses the reader more than helping
them; avoid this.

14 Chapter 4. Contents

http://blog.startifact.com/posts/older/what-is-pythonic.html

bio_utils Documentation, Release 1.3.0

Logically Organized

This point was basically made with the first Core Principle but will be re-iterated/elaborated on here. When opening a
toolkit, it should be easy to figure out where a tool is because “tools of a feather should be stored together”. Therefore,
a library should have a hierarchical structure grouping similar tools. All tools fit into at least some category so there
should never be a “miscellaneous” category.

Up-to-Date

An outdated library is not particularly useful. What constitutes an outdated library is quite subjective as some tools
may never need updating after they’re initially written. However, this is not normally the case as new functions become
desirable and various standards change. An up-to-date library should always support the latest file conventions and
adhere to current coding standards withing both the library and the library’s coding language.

Fast

The whole point of having a library is to save time and effort by pre-writing tools and making them easily accessible.
If the tools are slow for their given task, they are essentially useless. Scripts should be written so as to minimize
resource usage and maximize speed. Occasionally, a script that runs fast is not ASAP and vice versa. If such a conflict
arises, attempt to find an optimum intermediate favoring ASAP over speed.

4.5.4 Script Requirements

This section is as a practical coding guide to implement the above principles in bio_utils’ scripts.

Follow PEP!

Python already has multiple cannon code style guides, versioning systems, etc.; follow them! There are many PEPs
so it can be hard to keep track of them all. IDEs such as PyCharm will take care of PEP formatting for you. Several
critical PEPs are also linked below:

• PEP 0007 - C Code Style Guide

• PEP 0008 - Python Code Style

Guide * PEP 0440 - Versioning and Specifying Dependencies

Only One or a Few Related Importable Functions per Script

Each script should only contain a few related functions at most. Most scripts should only have a single function.
This helps keep everything logically and hierarchically organized. Let’s go over a simple example to demonstrate the
benefits of this approach:

One could write a script called fasta.py that contains all library functions dealing with FASTA files. This seems
convenient because if a developer wants to do something with a FASTA file, s/he only needs to look at one script to
see if the functionality they want exists. However, they have to open and look through the whole file to see if what
they want exists. Also, they can’t get any information on categorical functions such as what iterators available in
bio_utils. By creating a sub-package called “iterators” in bio_utils and placing a fasta.py script containing a single
function (iterating through a FASTA file), a developer can see what iterators are available and understand the function
of fasta.py at the same time without needing to open a file! Also, by placing a fasta.py in each appropriate sub-
package (with the package- corresponding functionality), a developer can simply search for files named fasta.py to

4.5. Contributing 15

https://www.jetbrains.com/pycharm/
https://www.python.org/dev/peps/pep-0007/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0440/

bio_utils Documentation, Release 1.3.0

glean everything they can do with a FASTA file in bio_utils. This also makes imports more obvious and clear to a
reader.

If multiple functions are all related to a single “thing” within the same sub-package, then it is appropriate to include
multiple functions in a single script. Doing so is simply a best judgement call.

No “End” Functions

As aforementioned, a software library is analogous to a toolbox. To that end, each script should perform and return
data but never execute an ultimatum. The developer needs to have maximal control over their script; they should
not have to worry about tools manipulating the flow of their program. As an example, all functions in the verifiers
sub-package used to exit the program if a file could not be validated because it assumed that if a file was incorrectly
formatted, the program calling it would crash downstream. This assumption is not always valid and such a drastic
change in program flow should never be assumed. Now all the verifiers raise a FormatError if a file is invalid. This
allows programmers let a script crash with the error or catch and continue.

Since each script or function must act as a means and not an end, they MUST return something. There is no such thing
as a silent function call in bio_utils.

In summary, scripts in bio_utils should never print to screen, exit the program, or elsewise do anything a developer
cannot control and must return something. Scripts can raise errors.

No Command-Line Programs

This section is somewhat related to the last, i.e. bio_utils is a library and not an end product. As such, there are no
standalone programs as that would constitute an end goal. There is, however, one exception: if the function in the
script can be logically and simply transformed into a standalone program, then it should be made into one. As an
example, each of the verifiers double as command-line programs that take a single file as their only argument and print
whether or not the file is properly formatted. When a script in bio_utils doubles as a program, it should:

1. Simply call it’s own importable function

2. The program should support the following (if applicable):

• Reading and writing compressed files

• Piping

• One or zero positional arguments

Docstrings for Each Script, Class, AND Function

Each individual document in bio_utils should be documented with docstrings and inline comments as appropriate.
More specifically, each docstring should have a synopsis line, document arguments, and returns as per Google Function
Definitions . If appropriate, the docstrings should also include a more thorough description of the function. Each script,
even those only containing a single function or class, should also have docstrings. If the script contains one function or
class, the docstring can simply be a one-liner about the function and copyright information. If the script has multiple
functions or classes, the docstrings should include a synopsis of what the script offers and a one-liner about each
function. Full API should also be described in our Sphinx

Metadata and Copyright

All scripts must start with the following code:

16 Chapter 4. Contents

https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments

bio_utils Documentation, Release 1.3.0

#! /usr/bin/env python

from __future__ imports go here

"""<one-liner describing software>

<whatever you want here>

Copyright:

<program name> <one-liner describing software>
Copyright (C) 2015 William Brazelton, Alex Hyer

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""

__author__ = '<authors>'
__email__ = '<email of lead author or maintainer>'
__license__ = 'GPLv3'
__maintainer__ = '<maintainer of script>'
__status__ = '<production level of script>'
__version__ = '<script version>'
__credits__ = '<credit for legally borrowed code if appropriate>'

imports, then rest of script

4.5.5 Sub-Package Requirements

This section details what sub-packages in bio_utils contain and when it is appropriate to start a new one.

2+ Scripts per Package

While you can have a package with just a single script, try for at least two scripts per package. The reasoning behind
this is simple, a package with a single script feels like an unnecessary “package” in the import statement and chances
are you can think of a second script useful to the concept driving the sub-package. If a script truly doesn’t fit in any
other sub-package, try to think of a second function fitting the schema and code it. bio_utils will never have a “misc”
package.

Import at Package Level

Since each script should have only one (or a few functions), they should be imported at the package level—in the
“__init__.py” file—so that a programmer doesn’t have to write redundant words in import statements. For example:

4.5. Contributing 17

bio_utils Documentation, Release 1.3.0

from bio_utils.iterators import sam_iter (package level = better)

from bio_utils.iterators.sam import sam_iter (file level = worse)

Own Documentation Page

Each sub-package must have its own web page in the documentation following this format:

=====
Title
=====

.. automodule:: <module>

Introduction

<what package contains and any globally relevant information>

<optional sections>

<first function>

<short function description, should be longer/give more info than function
one-liner>

.. autofunction:: <function>

4.6 Roadmap

4.6.1 Introduction

This page details planned updates and features for future versions of bio_utils. There is not a timetable for any of these
upgrades. The following changes may themselves change frequently and drastically.

4.6.2 V1.1

• Give all iterators an argument to verify each entry before returning

• Added iterator for forward and reverse reads

4.6.3 V1.2

• Create a new package for file tools

• Add versatile compression reader based on http://stackoverflow.com/a/13044946/1585509

• Add versatile compression writer

18 Chapter 4. Contents

http://stackoverflow.com/a/13044946/1585509

bio_utils Documentation, Release 1.3.0

4.6.4 V2.0

This major version change will include many changes that make bio_utils API more intuitive and better organized.
While some changes seem smaller, like renaming packages, they constitute a major as they will break current API and
not be backwards compatible.

• Rename iterators package to parsers, many doc changes

• Moving classes in iterators to a new “data storage structures” package

4.6. Roadmap 19

bio_utils Documentation, Release 1.3.0

20 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

21

bio_utils Documentation, Release 1.3.0

22 Chapter 5. Indices and tables

CHAPTER 6

Copyright

bio_utils’ operates under the GPLv3 License and may be edited and redistributed as per that license.

23

bio_utils Documentation, Release 1.3.0

24 Chapter 6. Copyright

Python Module Index

b
bio_utils, 1

25

bio_utils Documentation, Release 1.3.0

26 Python Module Index

Index

B
bio_utils (module), 1

27

	Summary
	Introduction
	Installation
	Contents
	Classes
	Iterators
	Verifiers
	Blast Tools
	Contributing
	Roadmap

	Indices and tables
	Copyright
	Python Module Index

