

bio_utils: library of common bioinformatic functions

	Authors

	Alex Hyer, William Brazelton, Christopher Thornton

	Date

	Dec 26, 2018

	Version

	1.3

[image: _images/bio_utils_logo_120.png]
Software library containing common bioinformatic functions

Copyright:

__init__.py software library containing common bioinformatic functions
Copyright (C) 2015 William Brazelton, Alex Hyer

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Summary

bio_utils is a library of Python modules performing routine functions in
bioinformatic scripts.

Introduction

Many bioinformatic scripts perform similar or identical tasks internally
during the execution of a program. Such tasks include reading FASTA files or
filtering BLAST+ results. bio_utils contains numerous functions that quickly
and simply handle simple, mundane, everyday tasks in a streamlined and simple
fashion to save developers time. bio_utils aims to be as simple as possible,
providing functionality without adding in unnecessary features, i.e. bio_utils
is as vanilla as reasonable. This both increases the speed of most functions
and greatly simplifies APIs.

Many libraries, such as
SCREED [https://screed.readthedocs.io/en/v0.9/] and
Biopython [http://biopython.org/], already provide importable functions that
execute these simple tasks. SCREED maintains a fairly simple API but is fairly
slow and no one has updated the original repo since 2012-06-17. Numerous
developers actively maintain Biopython and it is quite a bit faster, in some
regards, than SCREED. However, Biopython stocks their functions with an
enormous number of features that, while useful in a Python interpreter, are
often ignored by programs or can be accomplished more quickly using built-in
Python features, i.e. Biopython is bloatware to many developers. As
aforementioned, bio_utils’ vanilla design overcomes both these libraries issues
by providing both simplicity and speed.

At this point in time, bio_utils is quite small and its scope limited. The
authors intend to slowly but surely increase this library’s repertoire over
time. We welcome any and all contributions to our project.

Installation

pip install bio_utils

Contents

	Classes
	Introduction

	B6Entry

	FastaEntry

	FastqEntry

	GFF3Entry

	SamEntry

	Iterators
	Introduction

	Common Features

	b6_iter

	fasta_iter

	fastq_iter

	gff3_iter

	sam_iter

	Verifiers
	Introduction

	entry_verifier

	b6_verifier

	binary_guesser

	fasta_verifier

	fastq_verifier

	gff3_verifier

	sam_verifier

	Blast Tools
	Introduction

	blast_to_cigar

	b6_evalue_filter

	query_sequence_retriever

	subject_sequence_retriever

	Contributing
	Introduction

	How to Contribute

	Core Principles

	Script Requirements

	Sub-Package Requirements

	Roadmap
	Introduction

	V1.1

	V1.2

	V2.0

Indices and tables

	Index

	Module Index

	Search Page

Copyright

bio_utils’ operates under the GPLv3 License and may
be edited and redistributed as per that license.

Classes

Introduction

bio_utils’ offers many classes that house biological data from many different
file formats. Each instance contains an attribute per field of a given file
format as well as a write() method that returns the original entry properly
formatted and followed by a newline character. Each section below includes a
simple description of what each format contains and a link to a detailed
description of said format.

These classes are currently contained in the iterators subpackage but will
constitute their own package later, see Roadmap for details.

B6Entry

B6 files contain various data detailing the length and quality of an alignment
between nucleotide or protein sequences. This file format is used by
NCBI BLAST+ [https://www.ncbi.nlm.nih.gov/books/NBK279690/] as output format
6, hence B6 (Blast+ 6). B6 was referred to as M8 in NCBI BLAST.
drive5 [http://www.drive5.com/usearch/manual/blast6out.html] contains a
good, succinct description of this format. This class only supports the default
B6 format and does not accept arbitrary fields.

FastaEntry

FASTA files contain nucleotide and protein sequences differentiated by unique
identifiers. Wikipedia [https://en.wikipedia.org/wiki/FASTA_format] provides
both the history of the FASTA format and format specifications.

FastqEntry

FASTQ files contain nucleotide and protein sequences differentiated by unique
identifiers, like FASTA files. FASTQ files also contain
quality scores indicating the confidence of each base or residue declaration.
Wikipedia [https://en.wikipedia.org/wiki/FASTQ_format] provides a
description of the FASTQ format and the meaning of the various quality scores.

GFF3Entry

General Feature Format 3 (GFF3) contain various data on the location, type, and
quality of a nucleotide or protein sequence annotation. As opposed to previous
versions, GFF3 support an arbitrary number of hierarchical annotation levels.
GMOD [http://gmod.org/wiki/GFF3] gives a very detailed walkthrough of this
format.

SamEntry

Sequence Alignment/Map (SAM) files contains details on the location and quality
of an alignment. Many alignment programs produced SAM files as their default
output. GitHub [https://samtools.github.io/hts-specs/SAMv1.pdf] host a
painfully detailed description of the SAM file format.

Iterators

Introduction

The bio_utils’ iterators subpackage contains numerous iterators for a variety
of biology-relevant file types. The contained iterators share numerous features
listed in the next section. The subsequent sections detail iterator-specific
elements. Each iterator returns file-specific Python classes. This page only
details how to use the iterators not the instances they return, see
Classes for details on each class in bio_utils.

Common Features

Abilities shared by all iterators in this package include:

	Return file-specific instances, see Classes for more details

	Support the next() and __next__() methods

	Usable in for loops

	Accept any iterator: iter() objects, file handles, memory files, etc.

	Begin iteration at arbitrary lines using start_line or header argument

All iterators in this package are quite fast; the following table compares
SCREED’s, Biopython’s, and bio_utils’ FASTA iteration speed in seconds on a
3.2 GB FASTA file containing 1,614,108 sequence entries averaging 158 bases
each.

	FASTA File Iteration Speed for Different Libraries (seconds)

	Library

	Trial#1

	Trial#2

	Trial#3

	Trial#4

	Trial#5

	Average

	SCREED

	974.812

	971.185

	953.027

	961.247

	971.924

	966.439

	Biopython

	581.148

	575.677

	585.322

	548.876

	516.235

	561.452

	bio_utils

	290.876

	298.047

	291.625

	291.966

	289.635

	292.430

b6_iter

Iterates over B6 alignment files and returns each line as an instance of
B6Entry. This iterator does not support arbitrary table modifications as
does BLAST+.

fasta_iter

Iterates over a FASTA file and returns each entry as an instance of
FastaEntry. This iterator can handle sequences spanning multiple lines.

fastq_iter

Iterates over a FASTQ file and returns each entry as an instance of
FastqEntry. This iterator can handle sequences and quality score
spanning multiple lines.

gff3_iter

Iterates over a GFF3 file and returns each line as an instance of
GFF3Entry.

sam_iter

Iterates over a SAM file and returns each as line as an instance of
SamEntry.

Verifiers

Introduction

The bio_util’s verifiers subpackage contains numerous functions that verify the
data of a biological file format, i.e. they ensure a given file is properly
formatted. These function check file entries against a regex matching a
given file format. If the match fails, the verifier will subdivide the entry
and determine what part of the entry fails the regex. This investigation of the
entry permits the verifiers to return detailed error messages on what and where
the file failed. Each verifier except entry_verifier is also a program with
the simple syntax

[file]_verifier <file>

which simply reads through a file and prints whether ot not it is valid.

entry_verifier

The guts of the verifiers package, this versatile function matches a string
to a regex. If the match fails, entry_verifier() splits both the regex
and string by a given delimiter and matches each regex fragment to its
corresponding string fragment. When a string fragment fails, a custom
FormatError containing details on the failure is raised.

b6_verifier

Verifies the validity of a list of B6Entry.

binary_guesser

Heuristically guess whether a file is binary or text. While not technically a
“verifier”, this function fits in this subpackage well as it helps confirm
a generic property of the file before use by a program.

fasta_verifier

Verifies the validity of a list of FastaEntry.

fastq_verifier

Verifies the validity of a list of FastqEntry.

gff3_verifier

Verifies the validity of a list of GFF3Entry.

sam_verifier

Verifies the validity of a list of SamEntry.

Blast Tools

Introduction

The bio_utils’ blast_tools subpackage contains a few tools for making BLAST
output easier to work with. They are from extensive but what they do provide
may be useful to some developers.

blast_to_cigar

A simple function that converts the query sequence, subject sequence, and
midline fields of BLAST+ XML output (M7) to a
CIGAR string [http://drive5.com/usearch/manual/cigar.html]. This function
supports both the newer and older versions of CIGAR strings.

b6_evalue_filter

This function iterates through any iterator yielding lines of a
B6/M8 file. This iterator only returns the lines above an
E-value threshold as B6Entry.

query_sequence_retriever

Retrieve the aligned query sequence for each alignment in a B6 file above an
E-value threshold.

subject_sequence_retriever

Identical to query_sequence_retriever except it returns subject sequences.

Contributing

Introduction

Due to the potential size of this project and contributors thereto, it is
helpful to have an underlying, general philosophy concerning what should be
included in bio_utils, how it should be coded, and where it should go within
the library. This ensures that everything is structured logically and that
the library is both intuitive to use and internally consistent. This document
explains these philosophies—and their implementations—and should be read by
anyone looking to contribute to the library on whether or not their script
belongs in bio_utils, where it belongs, and how to structure their script.

How to Contribute

This section is placed near the top for your convenience, if this is your first
time contributing, please read the rest of this document first.

Start-Up Preparation

Follow these steps if you have never contributed to bio_utils before:

	Install the following software:

	Git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]

	Sphinx [http://www.sphinx-doc.org/en/stable/install.html]

	pytest [http://docs.pytest.org/en/latest/getting-started.html]

	gitchangelog [https://pypi.python.org/pypi/gitchangelog]

	Get a GitHub [https://github.com/] account

	Fork the repo [https://github.com/Brazelton-Lab/bio_utils] (‘fork’ button)

	Clone your copy of bio_utils:

git clone https://github.com/<your GitHub account username>/bio_utils.git

	Connect the “official” bio_utils repo to your fork:

git remote add braz https://github.com/Brazelton-Lab/bio_utils.git

Actually Contributing

Before editing anything, run the following command to make sure your copy of
bio_utils is up-to-date with the “official” branch:

git pull braz master

After editing or adding files, perform the following steps:

	Write a unit test [http://docs.pytest.org/en/latest/getting-started.html] if you wrote a new script.

	Run unit tests and do not continue with this workflow unless they pass:

cd <main directory of git repo>
py.test

	Add files to your git commit:

git add <file>

	Update ChangeLog.rst:

gitchangelog > ChangeLog.rst

	Commit your changes, add a detailed message in whatever text editor appears:

git commit

	Push your commit to GitHub:

git push origin

	Repeat steps 1-6 until you want to merge your changes to the “official” repo

	To merge your changes, go to you GitHub copy of bio_utils and click ‘Compare & pull request’

	In your pull request mention @TheOneHyer for review

Core Principles

Simple-to-Use/Intuitive

A software library is analogous to a toolkit. Like a real-world toolkit, it
should be organized so that any single tool can be found without any real
effort. Once a tool is found, it’s function should be obvious based on it’s
name, e.g. a screwdriver drives a screw through material. To translate this
analogy to computer terms, each script should be a single tool whose name
reflects its function.

ASAP (As Simple As Possible)

A screwdriver drives a screw, a hammer applies normal force, and a wrench
applies torque. Each of these tools’ use is fairly singular and unique. Each
script in a library should have a single, unique function. To say that in more
confusing terms: each tool should do one thing and one thing only, and said
thing shall not have already been done. Additionally, each script should be
written in a straightforward manner that is easy to read and understand; i.e.
each script should be
Pythonic [http://blog.startifact.com/posts/older/what-is-pythonic.html].

Heavily Documented

A library is used by developers writing a program. This obvious statement
should lead to an obvious conclusion: a library is of no use if a programmer
doesn’t know/can’t find out what any given tool does. Thus, each script should
be very documented heavily. While, it is better to document more than less,
there is such a thing as too much documentation. There comes a point where
documentation is too repetitive and confuses the reader more than helping them;
avoid this.

Logically Organized

This point was basically made with the first Core Principle but will be
re-iterated/elaborated on here. When opening a toolkit, it should be easy to
figure out where a tool is because “tools of a feather should be stored
together”. Therefore, a library should have a hierarchical structure grouping
similar tools. All tools fit into at least some category so there should never
be a “miscellaneous” category.

Up-to-Date

An outdated library is not particularly useful. What constitutes an outdated
library is quite subjective as some tools may never need updating after they’re
initially written. However, this is not normally the case as new functions
become desirable and various standards change. An up-to-date library should
always support the latest file conventions and adhere to current coding
standards withing both the library and the library’s coding language.

Fast

The whole point of having a library is to save time and effort by pre-writing
tools and making them easily accessible. If the tools are slow for their given
task, they are essentially useless. Scripts should be written so as to minimize
resource usage and maximize speed. Occasionally, a script that runs fast is not
ASAP and vice versa. If such a conflict arises, attempt to find an optimum
intermediate favoring ASAP over speed.

Script Requirements

This section is as a practical coding guide to implement the above principles
in bio_utils’ scripts.

Follow PEP!

Python already has multiple cannon code style guides, versioning systems, etc.;
follow them! There are many PEPs so it can be hard to keep track of them all.
IDEs such as PyCharm [https://www.jetbrains.com/pycharm/] will take care of
PEP formatting for you. Several critical PEPs are also linked below:

	PEP 0007 [https://www.python.org/dev/peps/pep-0007/] - C Code Style Guide

	PEP 0008 [https://www.python.org/dev/peps/pep-0008/] - Python Code Style

Guide
* PEP 0440 [https://www.python.org/dev/peps/pep-0440/] - Versioning and
Specifying Dependencies

Only One or a Few Related Importable Functions per Script

Each script should only contain a few related functions at most. Most scripts
should only have a single function. This helps keep everything logically and
hierarchically organized. Let’s go over a simple example to demonstrate the
benefits of this approach:

One could write a script called fasta.py that contains all library functions
dealing with FASTA files. This seems convenient because if a developer wants
to do something with a FASTA file, s/he only needs to look at one script to see
if the functionality they want exists. However, they have to open and look
through the whole file to see if what they want exists. Also, they can’t get
any information on categorical functions such as what iterators available in
bio_utils. By creating a sub-package called “iterators” in bio_utils and
placing a fasta.py script containing a single function (iterating through
a FASTA file), a developer can see what iterators are available and understand
the function of fasta.py at the same time without needing to open a file! Also,
by placing a fasta.py in each appropriate sub-package (with the package-
corresponding functionality), a developer can simply search for files named
fasta.py to glean everything they can do with a FASTA file in bio_utils.
This also makes imports more obvious and clear to a reader.

If multiple functions are all related to a single “thing” within the same
sub-package, then it is appropriate to include multiple functions in a single
script. Doing so is simply a best judgement call.

No “End” Functions

As aforementioned, a software library is analogous to a toolbox. To that end,
each script should perform and return data but never execute an ultimatum. The
developer needs to have maximal control over their script; they should not have
to worry about tools manipulating the flow of their program. As an example, all
functions in the verifiers sub-package used to exit the program if a file could
not be validated because it assumed that if a file was incorrectly formatted,
the program calling it would crash downstream. This assumption is not always
valid and such a drastic change in program flow should never be assumed. Now
all the verifiers raise a FormatError if a file is invalid. This
allows programmers let a script crash with the error or catch and continue.

Since each script or function must act as a means and not an end, they MUST
return something. There is no such thing as a silent function call in
bio_utils.

In summary, scripts in bio_utils should never print to screen, exit the
program, or elsewise do anything a developer cannot control and must return
something. Scripts can raise errors.

No Command-Line Programs

This section is somewhat related to the last, i.e. bio_utils is a library and
not an end product. As such, there are no standalone programs as that would
constitute an end goal. There is, however, one exception: if the function in
the script can be logically and simply transformed into a standalone program,
then it should be made into one. As an example, each of the verifiers double as
command-line programs that take a single file as their only argument and print
whether or not the file is properly formatted. When a script in bio_utils
doubles as a program, it should:

	Simply call it’s own importable function

	
	The program should support the following (if applicable):

	
	Reading and writing compressed files

	Piping

	One or zero positional arguments

Docstrings for Each Script, Class, AND Function

Each individual document in bio_utils should be documented with docstrings and
inline comments as appropriate. More specifically, each docstring should have
a synopsis line, document arguments, and returns as per
Google Function Definitions [https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments]
. If appropriate, the docstrings should also include a more thorough
description of the function. Each script, even those only containing a single
function or class, should also have docstrings. If the script contains one
function or class, the docstring can simply be a one-liner about the function
and copyright information. If the script has multiple functions or classes, the
docstrings should include a synopsis of what the script offers and a one-liner
about each function. Full API should also be described in our Sphinx

Metadata and Copyright

All scripts must start with the following code:

#! /usr/bin/env python

from __future__ imports go here

"""<one-liner describing software>

<whatever you want here>

Copyright:

 <program name> <one-liner describing software>
 Copyright (C) 2015 William Brazelton, Alex Hyer

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

__author__ = '<authors>'
__email__ = '<email of lead author or maintainer>'
__license__ = 'GPLv3'
__maintainer__ = '<maintainer of script>'
__status__ = '<production level of script>'
__version__ = '<script version>'
__credits__ = '<credit for legally borrowed code if appropriate>'

imports, then rest of script

Sub-Package Requirements

This section details what sub-packages in bio_utils contain and when it is
appropriate to start a new one.

2+ Scripts per Package

While you can have a package with just a single script, try for at least two
scripts per package. The reasoning behind this is simple, a package with a
single script feels like an unnecessary “package” in the import statement
and chances are you can think of a second script useful to the concept driving
the sub-package. If a script truly doesn’t fit in any other sub-package, try
to think of a second function fitting the schema and code it. bio_utils will
never have a “misc” package.

Import at Package Level

Since each script should have only one (or a few functions), they should be
imported at the package level—in the “__init__.py” file—so that a programmer
doesn’t have to write redundant words in import statements. For example:

from bio_utils.iterators import sam_iter (package level = better)

from bio_utils.iterators.sam import sam_iter (file level = worse)

Own Documentation Page

Each sub-package must have its own web page in the documentation following this
format:

=====
Title
=====

.. automodule:: <module>

Introduction

<what package contains and any globally relevant information>

<optional sections>

<first function>

<short function description, should be longer/give more info than function
one-liner>

.. autofunction:: <function>

Roadmap

Introduction

This page details planned updates and features for future versions of
bio_utils. There is not a timetable for any of these upgrades. The following
changes may themselves change frequently and drastically.

V1.1

	Give all iterators an argument to verify each entry before returning

	Added iterator for forward and reverse reads

V1.2

	Create a new package for file tools

	Add versatile compression reader based on http://stackoverflow.com/a/13044946/1585509

	Add versatile compression writer

V2.0

This major version change will include many changes that make bio_utils API
more intuitive and better organized. While some changes seem smaller, like
renaming packages, they constitute a major as they will break current API and
not be backwards compatible.

	Rename iterators package to parsers, many doc changes

	Moving classes in iterators to a new “data storage structures” package

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 bio_utils	

Index

 B

B

 	
 	bio_utils (module)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/bio_utils_logo_120.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 bio_utils: library of common bioinformatic functions

 		
 Classes

 		
 Introduction

 		
 B6Entry

 		
 FastaEntry

 		
 FastqEntry

 		
 GFF3Entry

 		
 SamEntry

 		
 Iterators

 		
 Introduction

 		
 Common Features

 		
 b6_iter

 		
 fasta_iter

 		
 fastq_iter

 		
 gff3_iter

 		
 sam_iter

 		
 Verifiers

 		
 Introduction

 		
 entry_verifier

 		
 b6_verifier

 		
 binary_guesser

 		
 fasta_verifier

 		
 fastq_verifier

 		
 gff3_verifier

 		
 sam_verifier

 		
 Blast Tools

 		
 Introduction

 		
 blast_to_cigar

 		
 b6_evalue_filter

 		
 query_sequence_retriever

 		
 subject_sequence_retriever

 		
 Contributing

 		
 Introduction

 		
 How to Contribute

 		
 Start-Up Preparation

 		
 Actually Contributing

 		
 Core Principles

 		
 Simple-to-Use/Intuitive

 		
 ASAP (As Simple As Possible)

 		
 Heavily Documented

 		
 Logically Organized

 		
 Up-to-Date

 		
 Fast

 		
 Script Requirements

 		
 Follow PEP!

 		
 Only One or a Few Related Importable Functions per Script

 		
 No “End” Functions

 		
 No Command-Line Programs

 		
 Docstrings for Each Script, Class, AND Function

 		
 Metadata and Copyright

 		
 Sub-Package Requirements

 		
 2+ Scripts per Package

 		
 Import at Package Level

 		
 Own Documentation Page

 		
 Roadmap

 		
 Introduction

 		
 V1.1

 		
 V1.2

 		
 V2.0

_static/up.png

_static/up-pressed.png

